HENSM= Human Enhanced Naïve Stem cell Media

02-09-2021, Updated in 10/06/2022
Original published in: Bayerl et al. Cell Stem Cell 2021
https://doi.org/10.1016/j.stem.2021.04.001

(i) In HENSM conditions TNKi/WNTi, SRCi and PKCi consolidate human naïve pluripotency further from previously described NSHM conditions (Gafni et al. Nature 2013). ACTIVIN A/NODAL signaling promotes human naïve pluripotency induction, opposite to what is observed in rodents where it destabilizes rodent naïve pluripotent state, and it can be totally omitted or titrated down once stable human naïve lines are established (after 3-5 passages).

(ii) 0HENSM & tHENSM - allows obtaining naïve condition with titrated down or no ERKi conditions when NOTCHi/RBPJi is added.

HENSM conditions are most efficient thus far in naïve conversions and in long-term maintenance without HDAC inhibitors for induction, or transgene transfections or compulsory feeder cells (MEFs), and without high propensity for chromosomal abnormalities or immediate and global loss of imprinting or oocyte inherited memory.

The image below summarizes our HENSM approach and ingredients of:
(1) Primary basic components (to be used for induction and maintenance)
(2) Secondary optional boosting Components (that can be used to boost induction in the first 3-5 passages and not compulsory for maintenance).
Enhanced NHSM Composition = (feeder and feeder free compatible):

HENSf

Primary Cytokines + inhibitors:
- 1:1 mix of Neurobasal (Invitrogen 21103-049) and DMEM/F12 (Invitrogen 21331) – 470μl
- Pen-strep 5ml (Biological Industries 03-033-1B)
- Glutamax - 5ml (Invitrogen 35050061)
- NEAA – 5ml (Biological Industries 01-340-1B)
- Sodium Pyruvate- 5ml (Biological Industries 03-042-1B)
- 10ml B27 supplement: Invitrogen 17504-044 or Xenofree A1486701 or in-house made
- L-ascorbic acid 2-phosphate (Sigma - A8960) (50 μg/ml final concentration) (1 vial)
- Geltrex (Invitrogen A1413202/A1413302) or Matrigel - 1ml rapidly in media (0.2% final conc.)
- N2 comp.% - Insulin (Sigma I-1882) - 5mg insulin per bottle (10microg/ml final concentration)
- N2 comp.% - Apo-transferrin (Sigma T-1147), 50 μg/ml final concentration
- N2 comp.% - Progesterone (Sigma P8783), 0.02 μg/ml final concentration
- N2 comp.% - Putrescine (Sigma P5780), 16 μg/ml final concentration
- N2 comp.% - Sodium selenite (Sigma S5261), add 5 μL of 3 mM stock solution per 500ml.

Essential Primary Basic components (needed for both induction and maintenance):
- 1) LIF (in house produced or Peprotech 300-05) – 20ng/ml final (1 vial=50μL)
- 2) WNTi: TNIK = XAV939 (Sigma X3004) - 2μM final (0.5 vial = 50μL) or IWP2 - 2μM final
- 3) PKCi Go6983 (Axon 2466) – 2μM final (1 vial=50μL)
- 4) FGFRi / MEK1/2 / ERK1/2i - PD0325901 (Axon 1408) – 1-1.2μM final (1-1.2 vial=50-60μL)
- 5) SRCi CGP77675 (Axon 2097) – 1.2μM (1.2 vial=60μL)

Optional Secondary Boosters (Optional for maintenance, and great boosters for induction phase (first 3-5 passages)):
- 5) ROCKi Y27632 (Axon 1683) – 1.2μM (60μL include upon assembling media)***
- 6) P38i/JNKi BIRB0796 (Axon 1358) – 0.8μM final (0.4 vial = 20μL)*
- 7) +/- ACTIVIN A – (Peprotech 120-14E) – 2-10 ng/ml final**.

***When passaging cells, you use additional freshly added Y27632 ROCKi 5μM for first 24h after splitting, as it further enhances cloning and survival efficiency.

**Although not compulsory, supplementation of ACTIVIN A during initial phases of primed to naïve reversion (10ng/ml), greatly enhances efficiency of naïve PSC clone recovery both in feeder containing and feeder free conditions for the first 3-5 passages, and then it can be omitted or titrated down to 5ng/ml or 2ng/ml. For many lines- PD0325901 concentration increase from 1 to 1.2 μM is preferable to remove heterogeneity. Alternatively, FGFRi PD170374 at 0.2 μM final concentration can be added in addition to 1μM ERK1 PD032590 used. The latter ACTIVIN and MEKi/FGFRi optimizations tend to improve human blastoid formation protocol outcome.

*Although not compulsory, supplementation of ROCKi and P38i during initial phases of primed to naïve reversion, greatly enhances efficiency of naïve PSC clone recovery both in feeder containing and feeder free conditions for the first 3-5 passages.
- Change media every 24-48h. Media is stable for 10 days in 4C. Cells should be ideally expanded on plates coated with 1% GELTREX (ThermoA1413202/A1413302) or 1% Matrigel or Biolaminin511 (5μg/ml) or MEF/gelatin coated plates. Cells are expanded in 5% O2, but also possible in 20% O2.
- TrypLE (1X) is optimal for single cell passaging (3ml per 10cm dish, 1ml per 6 well - for 4-6 min at 37C). Rapid 0.05% trypsinization (0.5-1 min @ 37C) is optimal for passaging as small clumps. Longer 0.05% trypsinization for 3-5 minutes @37 is optimal for microinjection into as the cells come out less sticky. Centrifuge @4 min x 1300RPM
Enhanced NHSM Composition with low or no ERKi:

tHENSM / OHENSM

Primary Cytokines + inhibitors:
- 1:1 mix of Neurobasal (Invitrogen 21103-049) and DMEM/F12 (Invitrogen 21331) – 470ml
- Pen-strep 5ml (Biological Industries 03-033-1B)
- Glutamax - 5ml (Invitrogen 35050061)
- NEAA – 5ml (Biological Industries 01-340-1B)
- Sodium Pyruvate- 5ml (Biological Industries 03-042-1B)
- 10ml B27 supplement: Invitrogen 17504-044 or Xenofree A1486701 or in-house made
- L-ascorbic acid 2-phosphate (Sigma - A8960) (50 μg/ml final concentration) (1 vial)
- Geltrex (Invitrogen A1413202/A1413302) or Matrigel- add 1ml rapidly (0.2% final conc.)
- N2 comp.% - Insulin (Sigma I-1882) - 5mg insulin per bottle (10microg/ml final concentration)
- N2 comp.% - Apo-transferrin (Sigma T-1147), 50 μg/ml final concentration
- N2 comp.% - Progesterone (Sigma P8783), 0.02 μg/ml final concentration;
- N2 comp.% - Putrescine (Sigma P5780), 16 μg/ml final concentration
- N2 comp.% - Sodium selenite (Sigma S5261), add 5 μL of 3 mM stock solution per 500ml.

Essential Primary Basic components (needed for both induction and maintenance):
- 1) LIF (in house produced or Peprotech 300-05) – **20ng/ml** final (1 vial=50μL)
- 2) WNTI: TNKi = XAV939 (Sigma X3004) – 2μM final (0.5 vial= 50μL) or IWP2 - 2μM final
- 3) NOTCHi/RBPj DBZ (Axon 1488) – **0.15μM** final (0.5 vial - **25μL**)
- 4) PKCi Go6983 (Axon 2466) – 2μM final (1 vial= 50μL)
- 5) SRCi CGP77675 (Axon 2097) – **1.2μM** (1.2 vial=60μL)
- 6) FGRi/MEKi PD0325901 (Axon 1408) – 0μM (for OHENSM) or 0.33 μM final (for tHENSM)

Optional Secondary Boosters (Optional for maintenance, and rather great boosters for induction phase (first 3-5 passages)):
- 7) ROCKi Y27632 (Axon 1683) – **1.2μM** (60μL include upon assembling media)**
- 8) P38i/JNKi BIRB0796 (Axon 1358) – 0.8μM final (0.40 vial = 20μL)
- 9) +/- ACTIVIN A (Peprotech 120-14E) – 2-10ng/ml final*.

When passing cells, you can use additional freshly added Y27632 ROCKi 5μM for first 24h after splitting, as it further enhances cloning and survival efficiency.

- Change media every 24h for better results, but 48h is possible!!
- Fully assembled media is stable for up to 10 days at 4C.
- tHENSM: ERKi PD0325901 is 0.33μM. OHENSM no-ERKi: PD0325901 =0μM
- Although not compulsory, supplementation of ACTIVIN A during initial phases of primed to naïve reversion (10ng/ml), greatly enhances efficiency of naïve PSC clone recovery both in feeder containing and feeder free conditions for the first 3-5 passages, and then it can be omitted or titrated down to 5ng/ml or 2ng/ml.
- Cells should be ideally expanded on plates coated with 1% GELTREX (Thermo A1413202/ A1413302) or 1% Matrigel or Biolaminin511 or MEF/gelatin coated plates.
- Cells are expanded preferably in 5% O2, but also possible in 20% O2.
- TrypE3 [1x] is optimal for single cell passing (3ml per 10c”m dish, 1ml per 6 well - for 4-6 min at 37C). Rapid 0.05% trypsinization (0.5-1 min @ 37C) is optimal for passaging as small clumps. Longer 0.05% trypsinization for 3-5 minutes @37 is optimal for microinjection into as the cells come out less sticky. Centrifuge @4 min x 1300RPM

 Jacob Hanna Lab – Weizmann Institute – HENSM protocol
Comments, explanations, FAQs and tips:

- Human naïve cells expanded in HENSM can give rise also to human TSCs, nPRE cells (XEN cells) and human PGCs as we show in Bayerl et al. Cell Stem Cell 2021, as well as to human Blastoids formation (e.g. via Kagawa et al. Nature 2021 protocol).

- To convert your already established primed hESCs and iPSCs, simply apply the media and start passaging the cells poly-clonally, as the naïve pluripotent cells take over within 2-5 passages. Acquisition and consolidation of most naïve features occurs within 10-14 days. To get experience for the cells by new users, we recommend converting 2-3 lines simultaneously on feeder and feeder-free conditions.

- TrypLE 1X solution (# 12604 Invitrogen) is used for passaging, we apply 3ml on 10cm dish for 4-6 minutes at 37°C, then aspirate the TrypLE, add 5ml PBS and resuspended the cells. Cells are detached by gentle pipetting.

- % Ready-made N2 supplement (Invitrogen - 17502-048) can be used instead of the 5 individual components (N2 comp. = Insulin, Apo-transferrin, Progesterone, Sodium selenite, Putrescine).

- Go6983 has red fluorescence signal, so pre-washing of cells before analysis should be applied. Remarkably, we note it down-regulates Mbd3-Gatad2a expression in mouse pluripotent cells and during reprogramming.

- ** On Feeder cells, the cells are tolerant to PERMANENT 1-5 μM Y27632 ROCK inhibition (basically indefinitely without differentiating). - Permanent high concentration >2.5 μM of Y27632 ROCKi CANNOT be used in feeder free condition maintenance. Thus, use 1-2 μM freshly or permanently added Y27632 is recommended (but not essential).

- ** After splitting, Y27632 5-10 μM (total conc.) can be used only 24h after splitting the cells.

- ** During iPSC reprogramming continuous Y27632 5μM ROCKi is recommended (at least during first 7 days).

- Supplementing naïve media with 0.2% Geltrex (Invitrogen A1413202/A1413302) or Growth Factor Reduced Matrigel (BD- FAL356231) [add 1ml in assembled media (0.2% final concentration)] has a dramatic influence on boosting naïve features and homogeneity among colonies and different PSC lines. We find Geltrex is slightly more favorable than Matrigel (particularly in no ACTIVIN conditions).

- Unlike in rodents where WNT signaling and nuclear Beta Catenin promotes naïve pluripotency, in humans this leads to an opposite effect. Thus, we use WNTi in HENSM versions: 1) Porcupine inhibitors (like IWP2 – 2μM final) are potent WNT inhibitors in human PSCs. 2) The use of inducer/stabilizer of AXIN complex (abbreviated as AXINs) through inhibition of Tankyrase (TNKi) (e.g., IWR1 5μM final concentration or XAV939 2μM final) induces cytoplasmic WNT/beta-catenin retention at the expense of its nuclear
localization effects, and thus reduces mesodermal gene expression patterns, reduces dependence on exogenous FGF2, and boosts epithelial signature and pluripotency gene expression. XAV939 or IWP2 yield better outcome than IWR1 in HENSM conditions also in terms of cell growth rate and less toxicity, and most prominently in ACTIVIN free conditions.

- Alpha-KG (Dimet2-oxoglutarate; Sigma 349631; add 60μL) – 0.8 mM final is another optional booster, but not needed as it tends to slow down proliferation.

- Cells can be expanded on plates coated with 0.2% gelatin/irradiated mouse feeder cells (we use DR4 routinely). More optimal for our current gene targeting approaches and subsequent colony picking.

- supplementing HENSM conditions with FGFRi PD173074 (0.5 μM) generated more rapidly human naïve PSCs capable of random X inactivation upon priming.

- Mitomycin C inactivated MEFs quickly die in NHSM and HENSM conditions and are NOT RECOMMENDED for use. Irradiated MEFs are much more resilient under these conditions.

- Media is relatively sensitive, no need for pre-heating (10 minutes at RT before use is enough, protect from light).

- Please make sure you use HUMAN LIF and NOT mouse Lif (Human LIF works both on mouse and human cells, Mouse Lif works only on mouse cells).

- Vial # indicated throughout the protocol is of course based on HANNA LAB internal aliquot stocks in our lab (which can change).
How should one approach adapting previously hESC/iPSC differentiation protocols?
We recommend to first test applying the differentiation protocol on human naïve cells, and/or simultaneously start with naïve cells, apply priming while the cells are adherent for 24-48 hours with primed human ESC medium, and then apply your differentiation protocol.

Human Naïve Cell Handling Protocols:
- Freezing human naïve cells:
 Solution 1: 20% DMSO and 80% FBS
 Solution 2: Freshly made HENSM medium including additional 20μM final Y27632 ROCKi.
 Re-suspend cells in 1:1 solution mix and freeze in regular cryotubes at -80 in styro-foam boxes (for at least 1 day – up to 2 months). Then move vials to liquid nitrogen. No need to use special freezing devices throughout the process.

- Thawing human naïve cells:
 Thaw vial at 37C and spin down in 10ml of 15% FBS supplemented DMEM (3 min at 1000RPM). Plate cells in HENSM containing 20μM ROCKi.

- DNA electroporation in human naïve PSCs:
 200-50ug DNA can be used for electroporation 10”cm confluent plate of human naïve PSCs harvested and trypsinized into single cells (0.05% trypsin or TrypLE).
 Electroporation parameters on human naïve PSCs on BIORAD Gene Pulser Xcell (with CE module): Square wave pulse protocol, Voltage: 250V, Pulse length 20ms, Number of pulses: 1, Pulse interval .0 (sec), 4mm cuvettes (BIORAD).
Preparing N2 stock components in-house:

Insulin (Prospec Bio CYT 270 = 1000mg)
• Prepare a 25mg/ml stock solution by dissolving 1000mg insulin in 40ml 0.01M HCl overnight at 4C. Sterile filter and store in 200μl individual aliquots in -80C (use 1 vial per 500ml bottle).

Apo-Transferrin (ATF Prospec PRO-325 - 5000MG)
• Prepare a 100mg/ml stock by dissolving 5000mg A-T in 50ml dH2O overnight at 4C. Sterile filter and store in -80C. Make 250μl aliquots (use 1 vial per 500ml bottle)

Progesterone (Sigma P8783, 25g)
• Prepare a 0.6mg/ml stock by dissolving 6mg Progesterone into 10ml Ethanol. Sterile filter and store in -80C. Make 17μl individual aliquots (use 1 vial per 500ml bottle)

Putrescine (Sigma P5780, 25g)
• Prepare a 160mg/ml stock by dissolving 1.6g Putrescine into 10ml dH2O. Sterile filter and store. Make 50μl individual aliquots and store in -80C (use 1 vial per 500ml bottle)

Sodium Selenite (Sigma S5261, 25g)
• Prepare a 1.5mM stock by dissolving 2.59mg Na Selenite in 10ml dH2O. Make 10μl individual aliquots and store in -80C (use 1 vial per 500ml bottle)

Preparing B27 supplement in-house (AKA B22):

See Hanna lab website for our in-house protocol:
Hanna Lab - Human NHSM and HENSM iPSC microinjection protocol

1. Dissect oviducts of hormone primed and mated B6D2F1 females X B6D2F1 males, and extract zygotes (as routinely done with mouse micro-manipulation in our lab).
2. Culture zygotes for 2 days in KSOM medium droplets (Zenith Biotech KSOMaa Evolve cat # ZEKS-050) covered with mineral oil at 37C 20% O2 or 5%O2 incubator, until they develop to morula stage.
3. Grow human naïve cells to 70-90% confluence in NHSM/NHSM+TNKi or HENSM/HENSM-ACT medium.
4. The day before cell harvesting add 20µM Y27632 ROCKi to the cells (in case not continuously used in the (E)NHSM medium).
5. Trypsinize the cells for ~ 5 minutes with 0.05% trypsin, shake and pipette thoroughly to yield one cell suspension. Stop the reaction with DMEM+15% FBS and centrifuge at 1000RPM for 4 Minutes. Aspirate and discard medium. 9 (0.05% trypsinization for 5 minutes @37 is more optimal for microinjection than Tryple, as the cells come out less sticky after trypsinization)
6. Resuspended cells in 900µl NHSM medium, add 100µl filtered FBS (to reduce stickiness of cells) and 20µM Y27632 ROCKi. Filter the cells through 40microN BD basket to reduce clumps. Keep on ice until and during injections!!! It is preferable to inject the cells as soon as they are harvested.
7. Inject 5 p53-/- or 10 WT human naïve cells to a mouse morula by using of Piezo (as routinely done with mouse ES injections). Include 20µM Y27632 ROCKi also in M2 media throughout the injection period. (any drop that has naïve PSCs during injection should have ROCKi to increase cell survival during the process). (We use 15micron Piezo needles 15-15-MS for both mouse and human naïve injections).
8. After injection, incubate for 3-4 hours in KSOM droplets supplemented with Y27632 20µM ROCKi covered with mineral oil.
9. After 3-4 hours transfer the morulas to KSOM droplets (without ROCKi) covered with mineral oil, incubate overnight. That way the morulas will develop into blastocyst (DO NOT LEAVE ROCKi for more than 4h as it will block blastocyst development).
10. The next day, most morulas should develop to blastocysts. Transfer 15-20 blastocysts to uterus of pseudo-pregnant B6D2F1 female mice.